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SUMMARY
Characterizing the functional organization of cerebral cortex is a fundamental step in understanding how
different kinds of information are processed in the brain. However, it is still unclear how these areas are orga-
nized during naturalistic visual and auditory stimulation. Here, we used high-resolution functional MRI data
from 176 human subjects to map the macro-architecture of the entire cerebral cortex based on responses
to a 60-min audiovisual movie stimulus. A data-driven clustering approach revealed a map of 24 functional
areas/networks, each explicitly linked to a specific aspect of sensory or cognitive processing. Novel features
of this map included an extended scene-selective network in the lateral prefrontal cortex, separate clusters
responsive to human-object and human-human interaction, and a push-pull interaction between three exec-
utive control (domain-general) networks and domain-specific regions of the visual, auditory, and language
cortex. Our cortical parcellation provides a comprehensive and unified map of functionally defined areas
in the human cerebral cortex.
INTRODUCTION

The human cerebral cortex contains a mosaic of areas. These

areas are typically delineated based on histology (cytoarchitec-

ture and myeloarchitecture), topography, functional properties,

and connectivity patterns.1 In 1909, Korbinian Brodmann subdi-

vided one cerebral hemisphere into 52 cytoarchitectonic areas.2

Recently, Brodmann’s map has been refined through histologi-

cal analysis of a large sample of brain tissues.3 Modern neuroi-

maging techniques have also enabled cartographers to map

the topography, function, and connectivity of many cortical

areas. Using multimodal neuroimaging data and a semi-auto-

mated gradient-based parcellation approach, Glasser et al.

delineated 180 areas/parcels in each hemisphere of cerebral

cortex.4

In higher associative areas of the temporal and frontal lobes,

the architectonic borders between areas are sometimes ambig-

uous due to gradual transitions in microstructure.5 These areas

also show considerable variability in anatomical location relative

to cortical folds.6 In addition, topographic maps, which provide

important landmarks for defining areas in early sensory and

motor cortices,7 are either absent or hard to resolve in these

higher-tier areas. It appears that function and connectivity could
Neuron 112, 1–17, Decem
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be reliable features in partitioning the cortex when architectonic

and topographic borders are not well defined.

Functional connectivity analyses suggest that cortical areas

are not isolated patches. Instead, each area is strongly

coupled with a number of geographically distinct regions to

form large-scale functional networks.8,9 Arguably, these

macroscopic networks might be building blocks of cortical or-

ganization because each network is at least partially respon-

sible for certain functions (e.g., a specific aspect of sensory

processing and its cognitive modulations), which are ultimately

relevant to behavior. Functional connectivity, as measured by

fMRI, is usually based on correlating activity time courses dur-

ing rest. Many functionally defined areas are not preferentially

active in the absence of a stimulus, and therefore, it would be

difficult to find fine-grained segregation between functional

networks in the resting state. To identify such areas, a set of

‘‘functional localizer’’ scans could be used, each for localizing

a specific cortical area or a network of areas. These localizers

have been very helpful in understanding the functional organi-

zation of high-level cortical areas.10 However, designing local-

izer experiments for a large number of stimulus categories and

task conditions would be inefficient and perhaps practically

impossible.
ber 18, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Naturalistic movie-watching paradigm and clustering analysis of fMRI data

(A) Subjects were scanned in a 7T scanner while watching audiovisual movie clips. In total, 18 clips were presented in four functional runs (5 clips in the first and

third runs, 4 clips in the second and fourth runs). The last clip of the four runs was the same, and it was included for test-retest purposes. 20-s rest periods were

interleaved between movie clips.

(B) Examples of averaged fMRI time courses. In each cortical vertex, time courses were averaged across 176 subjects after de-meaning.

(legend continued on next page)
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Here, we used rich audiovisual movie stimuli to effectively acti-

vate a large portion of cerebral cortex (sensory, category-selec-

tive, and cognitive regions). Then using a data-driven approach,

the entire cortex was functionally parcellated based on similarity/

commonality in the pattern of fMRI responses to the movie. The

results revealed a comprehensive map of cortical areas, net-

works, and subnetworks during naturalistic movie watching.

This parcellation reflects the architecture of cerebral cortex

when it is involved in processing complex and dynamic audiovi-

sual scenes.

RESULTS

We used movie-watching fMRI data of 176 healthy young adults

from the Human Connectome Project (HCP) database (https://

www.humanconnectome.org/study/hcp-young-adult). Subjects

were scanned in a 7T scanner while watching short (ranging from

1 to 4.3 min in length) audiovisual movie clips. The clips were in-

dependent film and Hollywood movie excerpts, which were

concatenated and presented in four functional runs (total scan

duration: 60 min) (Figure 1A). The movies contained a variety of

visual stimuli (people, animals, scenes, and objects), visual ac-

tions, sounds, music, speech, linguistic and social communica-

tions, and sometimes narratives. There were also 20 s rest pe-

riods between the movies. Subjects were allowed to make free

eye movements during the scans. It has been shown that visual

representations in high-level cortical areas are tolerant to eye

movements when watching a natural movie.11

Functional data in individual subjects were preprocessed

and multimodally transformed to a standard cortical surface

where left and right hemispheres were precisely registered

to each other (i.e., there was a one-to-one correspondence

between points/vertices of the two hemispheres).13,14 Each

hemisphere contained �30,000 vertices. In each subject,

time courses of activity in vertices were de-meaned and

concatenated across functional runs. The mean time course

in each vertex and each run was used for de-meaning. Data

matrices (vertices 3 time points) were then averaged across

subjects, assuming a robust inter-subject synchronization of

cortical activity during natural vision.15 Since the movies

were presented once to the subjects, the inter-subject aver-

aging of functional data provided more reliable activation pat-

terns. Furthermore, idiosyncratic low-frequency fluctuations of

fMRI response, which have an intrinsic origin, were largely

subtracted out by inter-subject averaging,16 and the averaged

time courses closely reflected what was presented in the
(C) Clustering analysis was performed on vertices of the entire cortex, then simila

hierarchical clustering. Two different metrics, Fowlkes-Mallows (FM) index and

clustering similarity was also computed for 100 permutations of simulated/rando

hemodynamic response function then spatially smoothed on the surface using a

function of 4mm.12 The shaded areas around the curves indicate one standard de

of 24 clusters.

(D) The red curve shows the similarity between clustering of individual runs and ful

clustering of subject groups and full data, averaged across four groups. The oran

The shaded area around the curve indicates one standard deviation, calculated b

24 clusters.

(E) The similarity values at the level of 24 clusters, separately for each run and each

plot (the horizontal line with its shaded area).
movies. Examples of averaged time courses are shown in

Figure 1B.

Next, we constructed an activity space in which each axis cor-

responded to the functional activity at a given time point. Given

the sampling rate of 1 Hz during data acquisition (TR = 1 s), the

averaged time courses included 3,655 time points for the entire

scan session. Thus, the activity space contained 3,655 orthog-

onal axes. Vertices of the two hemispheres (�60,000 vertices)

were data points in this space. Our primary goal was to find

distinct clusters of vertices based on the geometric distance be-

tween data points in the activity space. For the clustering anal-

ysis, a hierarchical clustering algorithm was used. The cophe-

netic correlation coefficient (a goodness-of-fit statistic) for our

clustering was 0.7436. Unlike other clustering algorithms (such

as k-means clustering) in which the number of clusters is fixed

and arbitrarily predefined, the hierarchical clustering groups

data points at various levels/scales. This multi-scale approach

can be particularly useful for testing hierarchical (‘‘coarse-to-

fine’’) partitioning of the spatially organized maps. At each level

of clustering, a color was assigned to vertices within each clus-

ter, and then the colored vertices were visualized on 2D flat

patches of cortex (Figure S1). Although we did not include any

information about the location of vertices in the clustering anal-

ysis, the maps demonstrated a remarkable spatial organization

of functionally defined clusters on the cortical surface. At the

very top level of hierarchical clustering, the first cluster appeared

in visual cortex of the occipital lobe. By progressively increasing

the number of clusters, visual cortex and the remaining parts of

cerebral cortex were recursively subdivided into smaller clus-

ters, and the resultingmaps showedmacro-organization of cere-

bral cortex at finer scales.

To assess the reliability/reproducibility of clustering maps, we

did several analyses. In one analysis, we computed the similarity

between cluster labels of vertices in the two hemispheres

(note that each vertex in the left hemisphere had a corresponding

vertex in the right hemisphere). Using two different metrics,

Fowlkes-Mallows index17 and adjusted Rand index,18 we

observed a high degree of similarity between clustering of

vertices in the two hemispheres (Figure 1C). In a control analysis,

the clustering similarity between the two hemispheres was

computed for simulated data in which the real functional activ-

ities of vertices were replaced with Gaussian white noise. The

clustering similarity was significantly higher for real data

compared with simulated/random data (for every level of clus-

tering: Bonferroni-corrected p < 0.01, permutation test) (Fig-

ure 1C). For real data, the clustering similarity gradually
rity of clustering maps in the two hemispheres was computed for 50 levels of

adjusted Rand (AR) index, were used to quantify the clustering similarity. The

m data. Before clustering, random noise data were convolved with a canonical

Gaussian kernel with sigma = 4 mm, mimicking a hemodynamic point spread

viation, calculated based on 100 simulations. The dotted line indicates the level

l data, averaged across four runs. The green curve shows the similarity between

ge curve shows the similarity between clustering of random data and full data.

ased on 100 permutations of random data. The dotted line indicates the level of

subject group. The similarity value for the randomdata is also shown on the bar
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Figure 2. Parcellation maps at the level of

24 clusters in the hierarchical clustering

analysis

On the left, maps are displayed on lateral, medial,

and ventral views of the inflated cortical surface

(fs_lr surface). Vertices of the medial wall were not

included in the analysis. On the right and in the

subsequent figures, maps are displayed on 2D flat

patches of fs_lr surface so that the entire cortex

could be seen in a single view. The top and bottom

rows show parcellation maps in left and right

hemispheres, respectively. Borders and areal

names of a multimodal parcellation (an atlas of 180

cortical areas in each hemisphere)4were overlaid on

our parcellation maps. The clusters were named

based on their anatomical location and topographic

correspondence with previously described func-

tional areas/networks in cortex.
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decreased as the number of clusters increased, but the similarity

values remained somewhat stable after the level of 24 clusters.

In additional analyses, we computed the similarity between

clustering of partial data and full data. The partial data were

either data from four individual runs or data from four indepen-

dent subject groups, each containing 44 subjects. In all these

cases, the clustering similarity, as measured by the Fowlkes-

Mallows index, was significantly higher compared with the sim-

ilarity between clustering of random data and full data (for every

level of clustering: Bonferroni-corrected p < 0.01, permutation

test) (Figure 1D). Interestingly, the two versions of partial data

showed a similar profile of clustering similarity. The clustering

similarity was about the same across runs (Figure 1E), suggest-

ing that the clustering of full data was not heavily influenced by a

particular run or particular movie events. For real data, the clus-

tering similarity gradually decreased as the number of clusters
4 Neuron 112, 1–17, December 18, 2024
increased, but the similarity values re-

mained somewhat stable after the level

of 24 clusters. We used 24 as a cutoff

point for the hierarchical clustering to

investigate the functional parcellation of

cerebral cortex. The 24th cluster in the hi-

erarchical clustering was the well-known

somatomotor cortex, which made us

confident that, at least up to this cutoff

point, the clusters were neurobiologically

valid. The optimal number of clusters

was also quantitatively estimated using

three indices that are commonly used in

machine learning (Figure S2). The results

of these indices appeared less useful,

however, for establishing a number of

functionally meaningful clusters (see the

caption of Figure S2 for more details).

Figure 2 shows the functional parcella-

tion maps at the level of 24 clusters. The

maps in left and right hemispheres were

largely similar. To gain a better insight

about the anatomical location of clusters,
a multimodal parcellation of cerebral cortex (a parcellation with

180 cortical areas in each hemisphere)4 was overlaid on our

maps. Clusters could be classified into four groups: (1) clusters

within sensory cortices, (2) clusters corresponding to category-

selective areas, (3) clusters corresponding to major cognitive

networks, and (4) a cluster corresponding to anterior temporal

cortex and other cortical regions with low fMRI response during

movie watching.

Six clusters in early visual cortex (V1–V4) were arranged along

the dorsal-ventral axis of the occipital lobe, and they appeared to

correspond to the representations of visual field eccentricities,

from foveal to peripheral visual fields. Two clusters corre-

sponded to auditory cortex (A1, belt, and parabelt) and high-level

auditory cortex (A4 and A5). One large cluster contained several

areas in somatomotor cortex. Seven category-selective clusters

included animacy (face) areas, animacy (body andmotion) areas,



Figure 3. Hierarchical clustering tree and

basic response properties of the clusters

(A) Dendrogram of hierarchical clustering tree from

2 to 24 clusters.

(B) The maps show response variability in 24

clusters. Response variability was estimated by

calculating the standard deviation of themean time

course of activity in each cluster. Regions indi-

cated by green borders, somatomotor cortex, and

executive control network 3 showed low response

variability.

(C) The maps show the correlation between the

mean time course of activity in each cluster and

the variability in eye position. Before computing the

correlation, the activation vectors were shifted by

4 s to account for the hemodynamic response

delay.19 For every second of the movie-watching

scan, the variability in eye position in each subject

was defined as square root of sum of variances of

horizontal and vertical eye position. If a time point

contained blinks or an abrupt eye-tracking signal

loss, a NaN value was assigned to that time point.

Thus, for 3,655 time points of the movie-watching

scan, we obtained values indicating the amount

of eye movements. The values were averaged

across subjects, and then the averaged vector was

correlated with the activation vectors in 24

clusters. Early visual cortex included six clusters

in foveal, mid-peripheral, and peripheral visual

cortex.
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object/tool areas, posterior-lateral scene areas, anterior-medial

scene areas, extended scene network, and action perception

network (aka ‘‘mirror-neuron’’ system). In Figures 4 and 6, we

will comprehensively evaluate the correspondence between

these clusters and category-selective areas localized through

conventional localizer maps. Seven cognitive processing clus-

ters included attention and eye-movement network, language

processing network, social cognition network, default mode

network, and three executive control networks. In Figures 5, 6,

and 7, we will comprehensively evaluate the correspondence

between these clusters and functional networks identified

through other analyses (a parcellation map from rest fMRI data

and activation maps from HCP task fMRI data).

The hierarchical clustering tree is shown in Figure 3A. Tracing of

clusters in the clustering tree revealed some interesting features.

One branch of the tree included foveal/parafoveal visual cortex

and animacy areas, whereas another branch included peripheral
N

visual cortex and scene areas. Such a

distinction is consistent with some current

models for the origin of animacy/face and

scene selectivity in visual cortex.20–22

Moreover, default mode, social cognition,

and language processing networks were

derived from a common node in the tree

structure, suggesting a link between se-

mantic, social, and linguistic representa-

tions in cerebral cortex.23

We investigated two basic response

properties in all clusters. In one analysis,
we looked at the response variability/fluctuation of the mean

time course in each cluster. The result of this analysis would

indicate how effectively the clusters were activated-deacti-

vated by the movie stimulus. As shown in themaps in Figure 3B,

a cluster that included anterior temporal cortex and some scat-

tered patches in the frontal lobe showed the lowest response

variability. Parts of this cluster in anterior temporal and orbito-

frontal cortex are regions where the signal-to-noise ratio in

functional imaging is typically low due to susceptibility arti-

facts.24 The remaining parts were small islands located at the

borders between other clusters. In another analysis, we looked

at the correlation between the mean time course of activity in

each cluster and the variability in eye position. Variability in

eye position was calculated by analyzing behavioral eye-

tracking data from all subjects. As shown in the maps in Fig-

ure 3C, there was a systematic increase in correlation from

foveal to peripheral regions in early visual cortex, consistent
euron 112, 1–17, December 18, 2024 5
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Figure 4. Topographic relationship between category-selective clusters and functional localizer maps

The animacy and object/tool clusters frommovie data are shown in (A), and the scene clusters frommovie data are shown in (E). Maps in (B)–(D) and (F) are group-

average functional localizer maps for visual categories (faces, bodies, tools, and places) from the S1200 package, and they were obtained from the HCPworking

memory task by comparing the activation for one category vs. the average activation for the other three categories. The maps represent Cohen’s d effect size. In

(B)–(D) and (F), the black outlines correspond to face, body, object/tool, and scene clusters, respectively. Using localizer maps as a guide and considering the

anatomical location of clusters, different subparts of each cluster were found to be analogous to known category-selective areas from the literature (see text for

the full names of labels). In (A), area MT/MST (white outlines) was derived from the Glasser parcellation.
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with the fact that eye movements are often driven by events in

the visual periphery.

To examine the topographic relationship between some of the

clusters in occipito-temporal cortex and classically defined cate-

gory-selective areas, we qualitatively compared these clusters

with functional localizer maps for visual categories (Figure 4).

These group-average maps of �1,000 HCP subjects were ob-

tained by comparing blocks of one category vs. blocks of other

categories (e.g., faces vs. bodies, tools, and scenes). The ani-

macy (face) cluster from movie data showed overlap with face-

selective vertices in localizer data. Based on correspondences

to the literature, we identified these regions as occipital face

area (OFA) and fusiform face area (FFA)25 (Figures 4A and 4B).

The animacy (body and motion) cluster frommovie data showed
6 Neuron 112, 1–17, December 18, 2024
overlap with body-selective vertices in localizer data. Based on

correspondences to the literature, we identified these regions

as extrastriate body area (EBA) and fusiform body area (FBA)26

(Figures 4A and 4C). The more dorsal patch also overlapped

with motion-sensitive regions MT/MST from the Glasser parcel-

lation. The object/tool cluster from movie data showed overlap

with tool-selective vertices in localizer data in the posterior mid-

dle temporal gyrus (pMTG), posterior intraparietal sulcus (pIPS),

and anterior intraparietal sulcus (aIPS)27 (Figures 4A and 4D).

Two scene clusters from movie data showed overlap with

scene-selective vertices in localizer data. Based on correspon-

dences to the literature, we identified these regions as occipital

place area (OPA), parahippocampal place area (PPA), and

medial place area (MPA)28 (Figures 4E and 4F). Specifically,
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Figure 5. Topographic relationship between lateral temporal clusters and some cognitive networks

(A) Five clusters from movie data arranged dorsoventrally in lateral temporal cortex.

(B) Group-average activation map from the S1200 package for the contrast of stories vs. baseline in the HCP language processing task. The baseline condition in

this task represented the mean activity across all time points in each run.

(C) Group-average activation map from the S1200 package for the contrast of social vs. random stimuli in the HCP social cognition task. In the social cognition

task, subjects were presented with short video clips of simple geometric shapes (squares, circles, and triangles) either interacting in some way (social condition)

or moving randomly (random condition). The maps in (B) and (C) represent Cohen’s d effect size.

(D) Default mode network from Yeo’s 7-network parcellation. In (B)–(D), the black outlines correspond to the depicted clusters in (A).
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one cluster included posterior OPA and posterior PPA, and the

other cluster included anterior OPA, anterior PPA, and MPA.

This functional segregation within the scene processing network

has also been reported previously.29,30 For scenes, tools, and

bodies, each cluster contained patches separated by a relatively

large distance on the cortical surface. This property, which was

seen in many clusters of our parcellation map, suggests that

clusters have not resulted from artifactual correlations (spatial

autocorrelations31) between the fMRI hemodynamic responses

of neighboring voxels.

The results above were quantitatively confirmed in a region-of-

interest (ROI) analysis. In each category localizer map, the corre-

sponding clusters from the movie data showed the highest acti-

vation (Figure S3A). Furthermore, the face, body, object/tool,

and scene clusters were generally more active/responsive for

frames of the movie that included categories related to those

clusters (faces and people in the face cluster; body parts and

hands in the body cluster; objects, tools, texts, and eyes in the

object/tool cluster; indoor and outdoor scenes in the scene clus-

ters) (Figure S3B). One cluster, named extended scene network

here (Figure 4E), also showed a relatively high response to

scenes compared with most other categories (Figure S3A), and

its preferred movie frames included pictures of scenes (Fig-

ure S3B). Furthermore, the activity of this cluster during movie

watching was strongly and selectively correlated with the activity

in the posterior-lateral and anterior-medial scene clusters (Fig-
ure S4). The extended scene network, which had a large compo-

nent in lateral prefrontal cortex, might be involved in processing

high-level semantic aspects of scenes in a naturalistic condition.

Five clusters were arranged dorsoventrally in lateral temporal

cortex. These clusters were named auditory cortex, high-level

auditory cortex, language processing network, social cognition

network, and default mode network (Figure 5A). The lateral tem-

poral component of the language processing cluster was located

in dorsal superior temporal sulcus (STSd) and area PSL of the left

hemisphere, with a smaller accompanying component in the

right hemisphere. Additional components of this cluster were

located in lateral prefrontal cortex of the left hemisphere, within

areas SFL, 55b, and Broca’s area (Brodmann areas 44, 45,

and 47). The auditory and language clusters matched almost

perfectly with the activations produced by the HCP language

processing task (the comparison between auditorily presented

stories vs. baseline) (Figures 5B and S5). The main component

of the social cognition cluster was located at the temporo-parie-

tal junction (areas TPOJ1 and STV). Interestingly, smaller com-

ponents of this cluster were located in specific areas in lateral

temporal and lateral prefrontal cortex of the right hemisphere,

which were homotopic (corresponding) to the left-hemisphere

language areas. This feature of our parcellation map was consis-

tent with a recent demonstration of complementary hemispheric

lateralization of language and social processing in the human

brain.23 The social cluster was located within the areas activated
Neuron 112, 1–17, December 18, 2024 7
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Figure 6. Characterization of two clusters located in parietal cortex

(A) A cluster labeled as action perception network and mirror-neuron system.

(B) The action categories used in the action localizer experiment.

(C) Mixed-effects group-average maps for the contrast of dynamic human-object interactions (yellow activations) vs. dynamic human-human interactions (cyan

activations) based on fMRI data from an independent group of 22 subjects. Data were analyzed in FreeSurfer on the fsaverage surface (see STAR Methods for

more details), then the activationmapswere resampled onto the fs_lr surface using spherical transformation. Themaps showFDR-adjusted significance values in

a logarithmic format.

(D) The bar plot shows the percent signal change values for dynamic and static stimuli of six action categories in the action perception and social cognition

clusters. The percent signal change values were computed based on the contrast of each stimulus condition vs. fixation. For the social cognition cluster, only

vertices of the right hemisphere were included in the analysis due to a strong hemispheric lateralization of this cluster. Error bars indicate one standard error of the

mean across subjects.

(E) A cluster labeled as attention and eye-movement network.

(F) Dorsal attention network from Yeo’s 7-network parcellation. In (C) and (F), borders of relevant clusters are shown.
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by the HCP social cognition task (the comparison between visu-

ally presented social vs. random stimuli) (Figures 5C and S5). A

more extended activation pattern produced by this task could

be due to uncontrolled visual confounds. The default mode clus-

ter was located in ventral STS and temporal pole (area TG). The

non-temporal components of this cluster were located in area

PGi, medial parietal cortex, medial prefrontal cortex, and regions

near/surrounding 55b and Broca’s area. All these components

overlapped with the default mode network obtained from a func-

tional connectivity analysis of resting-state fMRI data8 (Dice co-

efficient for spatial overlap = 0.41, Figure 5D).

An additional category-selective cluster, located in lateral pa-

rietal and premotor cortex, appeared to correspond to the action
8 Neuron 112, 1–17, December 18, 2024
perception network (mirror-neuron system)32 (Figure 6A). We

confirmed this by analyzing data from an independent block-

design fMRI experiment in which dynamic videos and static im-

ages from six action categories were presented to 22 subjects

(Figures 6B and S6). The action categories included human-ob-

ject (HO) interaction, human-human (HH) interaction, object-ob-

ject (OO) interaction, human (H) action, object (O) motion, and

scrambled (S) condition. Group-average maps of univariate

comparison between dynamic HO vs. dynamic HH revealed a

localized activation pattern for HO, which matched almost

perfectly with the action perception cluster (Figures 6C and

S5). This result suggests that the action perception network in

parietal and premotor cortex responds preferentially to specific
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Figure 7. Three executive control clusters and their functional properties

(A) Three clusters labeled as executive control networks 1, 2, and 3.

(B) The multiple demand network identified using the task fMRI data of 449 HCP subjects. Maps represent the average percent signal change.

(C) The mean time course of activity in the executive control networks. The dotted lines indicate the onset of 20-s rest periods.

(legend continued on next page)
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types of action stimuli that involve HO interactions. The HO acti-

vations were stronger in the left hemisphere. In an ROI analysis

(Figure 6D), the action perception cluster showed significantly

higher response to dynamic HO compared with other conditions

(p < 0.05 for all pairwise comparisons between dynamic HO

and other conditions, except dynamic HO vs. dynamic OO;

repeated-measures ANOVA, Tukey post hoc test). By contrast,

the social cognition cluster in the right hemisphere showed

significantly higher response to dynamic HH compared with

other conditions (p < 0.05 for all pairwise comparisons between

dynamic HH and other conditions; repeated-measures ANOVA,

Tukey post hoc test).

Adjacent to the action perception cluster, there was a cluster

that overlapped with frontal eye field (FEF) and superior parietal

parcels of the Glasser parcellation (Figures 2 and 6E). A meta-

analysis of fMRI activations has demonstrated that FEF and re-

gions in/near the intraparietal sulcus are consistently activated

during attention tasks.33 Thus, based on the anatomical location,

we predicted that this cluster is related to the attention and eye-

movement network. To test this prediction, we evaluated the

topographic correspondence between this cluster and the dor-

sal attention network.34 The dorsal attention network was identi-

fied via a functional connectivity analysis of resting-state fMRI

data.8 As shown in Figure 6F, the attention and eye-movement

cluster showed a partial overlap with this network (Dice coeffi-

cient for spatial overlap = 0.29). A possible reason for partial

overlap is that some dorsal attention regions outside the cluster

(e.g., MT/MST and action perception areas) were strongly acti-

vated by other components of the movie, and therefore they

were assigned to other networks.

A large swath of parietal, temporal, and prefrontal cortex was

occupied by three clusters, which were named executive control

networks 1, 2, and 3 (Figure 7A) based on the anatomical loca-

tion, and also a large overlap with the multiple demand network

(Figures 7B and S5). The three clusters were spatially juxtaposed

throughout the cortex. The multiple demand network was identi-

fied by averaging the HCP group-average beta maps of three

task contrasts (2-back vs. 0-back working memory task, hard

vs. easy relational processing task, and math vs. story task).35

The multiple demand or domain-general network is believed to

be flexibly involved in the execution of many tasks, and it may

play a core role in cognitive control.36 This network has substan-

tial overlap with fronto-parietal and cingulo-opercular control

networks identified in resting-state functional connectivity

maps.37–39

To explore the role of executive control clusters during passive

movie-watching paradigm, we first looked at the mean time

course of activity across all cortical vertices within these clus-

ters. The time courses revealed a surprisingly large response

at the transition frommovie to rest periods (Figure 7C). This large

and significant response was quite evident, especially in execu-

tive control network 2, when the responses were averaged
(D) The graph shows the averaged responses across selected time windows aroun

across 18 time windows.

(E) A regressor was defined based on the times of transition frommovie to rest. It w

The regressor was convolved with a canonical hemodynamic response function, t

borders of executive control clusters are shown.
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across selected time windows around 20 s rest periods (Fig-

ure 7D). Such transient response was either weak or absent at

the transition from rest to movie periods. To evaluate this tran-

sient response in the entire cortex, we defined a regressor based

on the times of transition from movie to rest, then computed the

correlation between the regressor and the time courses of all

cortical vertices (Figure 7E). Regions of high positive correlation

were localized in executive control networks. As expected,

the stimulus-driven regions in early visual and auditory cortex

showed strong negative correlation, though intriguingly, an addi-

tional region of the most peripheral visual cortex showed the

same positive response seen in executive control networks.

Next, we measured the functional correlation between the

mean time course of activity in each executive control cluster

(seed regions) and the time courses of activity in all cortical

vertices and cortical clusters after removing 20 s rest and 20 s

after-rest periods. The vertex-wise and cluster-wise correlation

maps are shown in Figure 8A. The three executive control net-

works were similar in their positive correlations, covering the

whole multiple demand areas. Interestingly, the maps also re-

vealed strong negative correlation between executive control

networks and cortical regions/clusters, which corresponded to

domain-specific areas. Executive control networks 1 and 3 had

strong negative correlation with high-level auditory cortex and

language processing network. Executive control network 2,

which was located in areas POS2 and PFm (Figure 2), had strong

negative correlation with high-level visual cortex, including ani-

macy areas, object/tool areas, and action perception network.

These anticorrelations were evident throughout the movies, for

all the movie clips (Figure 8B). These results suggest a ‘‘push-

pull’’ interaction between domain-general and domain-specific

areas of cortex. We did not observe such push-pull interaction

when the correlation maps were obtained using the HCP

resting-state fMRI data (Figure S7). In the analysis with no global

signal regression, the correlation values were around zero in

domain-specific areas of cortex. In the analysis with global signal

regression, there was a widespread pattern of anticorrelations

outside the executive control networks. Unlike the movie data,

however, anticorrelation was not confined to domain-specific

areas (compare the maps in Figures 8A and S7).

DISCUSSION

In this human fMRI study, we used a data-driven approach

to functionally parcellate the entire cerebral cortex. In this

approach, we used rich audiovisual movie stimuli to drive the

cortex and elicit a large variation in the patterns of response

across voxels/vertices. In each vertex, the time courses of

response were averaged across subjects, considering that the

local fMRI responses show remarkable inter-subject synchrony

under natural viewing conditions.15 The averaging was done in

a common anatomical space after multimodal transformation
d 20-s rest periods. The shaded areas indicate one standard error of the mean

as a vector of 1 s and 0 s—1 at the times of transition and 0 at the other times.

hen it was correlated with the time courses of all cortical vertices. In (B) and (E),
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of individual subjects’ data. Other methods of averaging (such as

‘‘hyperalignment’’40) may improve the estimation of group-

average fMRI responses. In the next step, we applied a clus-

tering algorithm on data points (vertices) in the activity space.

We used hierarchical clustering, which had the advantage of

defining clusters/parcels at different scales/resolutions. Further-

more, hierarchical clustering takes the nested structure of func-

tional architecture into account and ensures that using fewer/

more clusters leads only to cluster merges/splits, whereas other

approaches (e.g., k-means clustering) may generate completely

different maps depending on the number of clusters specified.

The parcellation map at the level of 24 clusters showed clus-

ters that topographically corresponded to previously known

cortical areas and networks (e.g., the category-selective areas).

This map is suitable for evaluating large-scale cortical networks.

A parcellation map with a higher number of clusters could reveal

finer distinctions within the networks and perhaps even milli-

meter-scale subregions within the areas. For example, some of

the clusters in temporal and prefrontal cortex may contain a

fine-grained representation of semantic information.41

One of the challenges in clustering analyses is to define an

optimal number of clusters. In machine learning, there are princi-

pled methods to find optimal solutions for clustering. However, it

is unlikely that there is a single correct solution for parcellating

the cortex. The reason is that cerebral cortex contains a multi-

scale organization. At a macroscopic scale, cerebral cortex is

composed of a mosaic of areas. These areas are strongly inter-

connected, forming large-scale networks (‘‘supra-areal organi-

zation’’).42 At a sub-areal level, mesoscale structures (such as

ocular dominance columns in V1, thin and thick stripes in V2,

etc.) could be identified.43 A growing number of studies suggest

that various aspects of perceptual and behavioral phenomena

could be better explained by dynamic interactions of distributed

brain areas.44 For example, a network of face areas across cor-

tex collectively contributes to face perception.45 Thus, investi-

gating the cortical organization at the level of functional networks

could be a primary step in understanding the cortical computa-

tions that are relevant to perception and behavior. In our study,

we chose a relatively low cutoff point in hierarchical clustering

to identify the main functional networks during naturalistic movie

watching. Each network normally included multiple areas.

In our parcellation map, instead of labeling clusters as cluster

1, cluster 2, etc., we assigned a name to each cluster based on

its presumed function. For naming, we considered several

factors, including anatomical location of clusters, topographic

correspondence between clusters and task/rest fMRI maps,

preferred movie frames that produced the highest response in

clusters, and cognitive neuroscience knowledge derived from

the literature. Some clusters were distributed across cortex,

making it difficult to use pure anatomical terms. Thus, we treated
Figure 8. A push-pull interaction between executive control networks

(A) The maps show Pearson correlation between the mean time course of activity

vertices (the maps on the left) and cortical clusters (the maps on the right) after

highlighted on the cluster-wise maps.

(B) As an example, the mean time courses of activity in two clusters of the right h

average window of 50 s, just for visualization purposes (the correlation analysis wa

the plot. The correlation coefficient value was computed after removing 20-s res
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all clusters as functional networks, each with a specific role in

cortical processing. This naming approach was in line with clas-

sifying cortical computations in the framework of cognitive

ontology.46 By further characterizing the clusters and breaking

them down into smaller subnetworks, it would be possible to

refine the current names and perhaps even replace them with

more specific names. For category-selective clusters, we related

different parts of each cluster to previously described and

named category-selective areas.

Previous studies have used resting-state fMRI data to parcel-

late the cortex in humans. Yeo et al. identified a set of cortical

networks using a clustering analysis applied on data from a pop-

ulation of 1,000 healthy subjects.8 Other studies employed

various computational techniques to parcellate individual sub-

jects’ cortices (e.g., see Wig et al., Laumann et al., and Wang

et al.47–49). Using boundary mapping50 and graph theory, Nelson

et al. parcellated the lateral parietal cortex into six distinct ‘‘mod-

ules’’51. The boundary mapping technique has also been used to

parcellate the whole cortex.52 In a follow-up study, a whole-cor-

tex parcellation was obtained by integrating local gradient and

global similarity approaches.53 Using a module detection algo-

rithm, Goulas et al. parcellated the lateral frontal cortex.54 Using

k-means clustering, Kahnt et al. parcellated the orbitofrontal cor-

tex.55 Finally, in one fMRI study,56 human subjects were scanned

while viewing rapid event-related presentations of 69 unique

images drawn from 9 object categories. Using data-driven clus-

tering of voxels, this study found face, place, and body clusters/

systems in the ventral visual pathway.

Some of the clusters in our parcellation map roughly corre-

spond to the equivalent clusters in other parcellation maps that

are based on resting-state data (e.g., default mode network in

our parcellation and Yeo’s parcellation). However, the exact

topography of clusters varies depending on the type of parcella-

tion. In addition, the category-selective clusters, which are well

differentiated in our map, are not clearly identified when the

resting-state data are used. As mentioned in the introduction,

these clusters/regions of cortex are not preferentially active in

the absence of a stimulus. Another advantage of using movie-

watching data for parcellation is that, by analyzing the movie

content, one can assess functional selectivity in less-studied

cortical regions (i.e., regions for which a good a priori hypothesis

about their function does not exist). These regions may have a

counterintuitive selectivity to complex stimuli or a combination

of stimuli. Such selectivity could be discovered through data-

driven approaches.

Functional parcellation approaches have several advantages

over classical localizer experiments in defining cortical areas.

First, areas defined by a parcellation approach would have

well-constrained selectivity to a specific stimulus due to the

rich content of movie stimuli. Localizer experiments are typically
and domain-specific areas of cerebral cortex

in the executive control clusters and the time courses of activity in all cortical

removing 20-s rest and 20-s after-rest periods. Domain-specific clusters are

emisphere are demonstrated. The time courses were smoothed with a moving

s done without smoothing of the data). The onset of all movie clips is marked in

t and 20-s after-rest periods. ***: p << 0.0005.
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designed for testing responses to a limited set of stimuli, and lo-

calizer maps sometimes show a widespread activation pattern.

Some weak activations in these maps may actually disappear

if the responses are tested for a broader range of stimuli. Sec-

ond, a functional parcellation map may reveal genuine topo-

graphic borders between areas because it is based on re-

sponses obtained during a naturalistic condition where many

cognitive processes and top-down modulations are present.

Third, based on a parcellation/clustering map, one can explore

the response properties in areas that have not been charted pre-

viously. For each cluster, one can use a ‘‘reverse- correlation’’

approach to find the movie frames or the movie segments that

produce the highest (and the lowest) response. These movie

frames/segments can be used as a guide to deliver a set of hy-

potheses about the function of these clusters. These hypotheses

and predictions could be thoroughly tested in well-controlled

experiments. Fourth, the parcellation data can be used to inves-

tigate the functional interactions between different areas/

networks of cortex during movie watching. We took such an

approach in Figure 8 to look at the correlation maps of executive

control networks.

Linking the fMRI responses to the movie frames can be useful

for addressing further interesting questions. The parcellation al-

gorithm forces a set of data points to be segmented into discrete

clusters with ‘‘hard borders’’ between them. However, functional

selectivity may not be homogeneous within a cluster. Instead,

selectivity may change smoothly within and across the clusters

as part of a large-scale ‘‘gradient’’ in cortical representation.57

To clarify whether such smooth transitions exist, one can inves-

tigate the preferred movie frames for a region of cortex located

at/near the border between two clusters. Furthermore, by

comparing the preferred movie frames across clusters, subtle

variations in response profile might be identified for clusters

that show a common preference for a stimulus category. For

instance, there might be a systematic difference between the

preferred scene frames of posterior-lateral vs. anterior-medial

scene clusters.58

A movie sometimes has highly correlated information. For

instance, faces and bodies are normally present together in the

same frames of the movie. There is also co-occurrence of

faces/bodies and motion in many frames of the movie since

faces and bodies, as animate objects, are typically in motion.

These stimulus correlations, which are also present during natu-

ral vision in everyday life, may have fundamental consequences

on the cortical representation of these stimuli. First, stimuli that

normally co-occur in natural vision may be represented in corti-

cally adjacent regions. This is in fact the case for face, body, and

motion areas. Second, these areas may be partially activated by

non-preferred but closely related stimuli. Accordingly, recent ev-

idence suggests that biological movements contribute strongly

to the responses in macaque face patches during the free

viewing of movie clips.59 These partial activations plus co-occur-

rence of stimuli in the movie would make it difficult to separate

the corresponding areas by a clustering algorithm. However,

in the parcellation map of 24 clusters, we were able to separate

the face and body/motion clusters. The movie clips used in our

study had a rich content, occasionally including close-up views

of faces or body parts/hands. These particular movie frames
may have helped to separate the face and body/motion clusters

by producing a relatively higher response in one cluster or

another. Body and motion areas, though grouped together in

the map of 24 clusters, were separated at a later stage of hierar-

chical clustering (Figure S8). Again, parts of the movie, which

include static people/bodies or dynamic inanimate objects,

may have helped to distinguish these areas.

The cortical parcellation map in our study was based on

group-average time courses. Due to the lack of stimulus repeti-

tions in the movie, the statistical power was inherently low.

Therefore, extensive signal-averaging across subjects enabled

us to have a better estimate of fMRI responses. The clusters ob-

tainedwith this parcellation could be considered themost robust

clusters that presumably play key roles in cortical processing.

However, it is possible that each subject has an idiosyncratic

parcellation map. By scanning individual subjects in multiple

sessions, one can assess individual differences in the parcella-

tion maps and in the layout of cortical areas/networks. Single-

subject parcellation could also reveal small areas in ‘‘balkan-

ized’’ regions of cortex (e.g., face patches in anterior temporal

cortex). These areas tend to be lost during the averaging process

due to a high degree of variability in their locations. In classical

localizer experiments, the size and topography of cortical areas

in an individual subject depends on the amount of thresholding in

the activation maps—the areas gradually shrink or expand by

continuously changing the threshold (‘‘tip of the iceberg’’ effect).

This arbitrariness in threshold setting, which is a serious problem

when comparing areas across subjects, can be avoided by

parcellating the cerebral cortex using a clustering algorithm. By

changing the number of clusters in a clustering analysis, the

areas may split or merge, but their borders are invariably

well defined.

The parcellation map showed clusters in early visual cortex

that spatially corresponded to the representation of eccentricity

bands. This finding is consistent with the idea that ‘‘eccentricity

bias’’ is the major organizing principle in the visual occipito-

temporal cortex.21,60,61 Interestingly, widespread correlation

patterns of resting-state fMRI signal across early visual cortex

also reflect topographic (eccentricity-based) organization.62

Thus, shared eccentricity representations may outweigh func-

tional differences across anatomically defined areas such as

V1, V2, V3, and V4.

The action perception cluster was predominantly located in

lateral parietal and premotor cortex, in regions that are classi-

cally considered as the mirror-neuron system (mirror-neuron

network) in humans.63 This network, which was originally discov-

ered in homologous regions in monkeys, is activated during ac-

tion observation.32,64 Such activation is thought to contribute to

action understanding and imitation. By testing the fMRI re-

sponses to a wide range of action categories, here we showed

that this network is particularly involved in the processing of dy-

namic HO interactions. Previous studies have tested the fMRI re-

sponses to static/still images of HO interactions. These images

are reportedly represented in a distributed network of areas in

occipito-temporal and frontal cortex.65,66 Using simple video

clips of manipulative actions, studies by the Orban group have

reported the involvement of the putative human anterior intrapar-

ietal sulcus (phAIP) during the observation of motor acts typically
Neuron 112, 1–17, December 18, 2024 13
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done with the hand.67–69 This area was part of our action percep-

tion cluster (Figure 2), which showed a selective response to dy-

namic HO interactions in a naturalistic setting. In our study, the

responses to videos of HO interactions were stronger in the left

hemisphere, whereas the responses to videos of human-human

interactions were stronger in the right hemisphere. These two

lateralization effects might be complementarily associated with

each other. This conjecture could be tested in an fMRI study us-

ing a large sample of subjects.

When we were investigating the time courses of activity in the

executive control clusters, we serendipitously found a large

response at the transition from movie to rest. This response

was not observed at the transition from rest to movie, and it

was confined topographically to the executive control networks,

ruling out the fact that it is merely a stimulus-driven transient

signal. Since the end of each movie clip was at an unpredictable

time, the large response in executive control networks could be

attributed to a ‘‘surprise signal.’’ In fact, parts of the executive

control network 3 were located in the cingulo-opercular cortex,

which plays a pivotal role in encoding surprise and salient

events.70 Activations in executive control networks, however,

extended beyond the salience network into regions involved in

memory encoding and retrieval—executive control networks 1

and 2 showed a considerable overlap with working memory

network71 and parietal memory network,72,73 respectively. It is

possible that, when the movie clips end abruptly, the memory

circuits are automatically activated/engaged even in the

absence of an explicit cognitive task. This activation would be

useful for remembering and comprehending the content and

narrative of the clips. Another possibility is that the activity in ex-

ecutive control networks reflects disassembling an internal

model of the movie events that has been progressively built up

during movie watching.74 This unbinding process would be

more pronounced when the movie clips end. Finally, the activity

in the executive control networks at the transition from movie to

rest shows resemblance to the previously reported cortical activ-

ity at the transition from a task block to a fixation block (task

block offset).75,76 Such transient responses, which are robustly

found in the ventral attention system and some distributed re-

gions in the frontal and parietal cortex, are thought to be linked

to the detection of novel and unexpected events.75 They could

also be attributed to the process of reorganization in brain

states.75

The push-pull interaction between domain-general and

domain-specific areas of cortex, reported for the first time

here, has a computational benefit of using neural resources

more efficiently. When themovie scenes have a clear content de-

picting people, objects, actions, and conversation, domain-spe-

cific areas, which are tuned to those stimuli, become active to

process them. On the other hand, when the scenes are ambig-

uous, requiring some forms of cognitive effort to resolve them,

domain-general areas may be flexibly recruited. This splitting

of function is in line with the idea of ‘‘sparse coding’’77, and it

suggests that only a subset of cortical territories is active at

any given point in time during movie watching. The push-pull

interaction could be tested and confirmed in subsequent studies

using well-controlled paradigms. For example, by parametrically

manipulating the ambiguity of naturalistic videos, one can test
14 Neuron 112, 1–17, December 18, 2024
whether the activations shift from domain-specific to domain-

general areas of cortex. The push-pull interaction could also be

tested in deep neural networks by analyzing the dynamic interac-

tions between sharply tuned and broadly tuned units in the top

layers of networks.

The push-pull interaction between domain-general and

domain-specific areas of cortex was not observed when the cor-

relation maps were obtained using the HCP resting-state fMRI

data. One possibility is that such interaction is mainly driven by

movie events. Another possible explanation, which is technical

in nature, is related to a ‘‘positive correlation/connectivity bias’’

in the maps of resting-state scans when the effects of global

signal are not removed.78 After global signal regression, as ex-

pected, regions of high negative correlation appeared on the

maps, though these regions were not localized within domain-

specific areas of cortex. It has been argued that the traditional

ways of global signal regression are suboptimal because they

could potentially remove or reduce any global or semi-global

neural signal in the data, particularly impacting large functional

networks or those with large amplitude fluctuations such that

they contributemore to themean timeseries used in global signal

regression.79 Thus, the presence or absence of the push-pull

interaction during rest should be re-evaluated after removing

structured temporal noise in the fMRI timeseries using advanced

methods such as temporal ICA.79

What is the importance of cortical parcellation? A great deal of

evidence suggests that cerebral cortex in primates is functionally

compartmentalized (seeKanwisher80 for review). A full character-

ization of the layout of cortical areas/networks would be a funda-

mental step in understanding the cortical computations if we as-

sume a tight relationship between cortical organization and

cortical function. Characterizing the cortical maps could also

help predict what behavioral and perceptual changes would

occur in pathological cases where certain regions of cortex are

affected by macroscopic damage/atrophy. The cortical maps

may change systematically in psychiatric disorders such as

autismandschizophrenia. In future studies, cerebral cortex could

be functionally parcellated in these disease populations using a

movie-watching paradigm. Similarly, cerebral cortex could also

be functionally parcellated in various stages of lifespan develop-

ment. Such studies would shed light on how the organization of

cortex changes in the course of cortical development.81
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

E-Prime Psychology Software Tools https://pstnet.com/products/e-prime

Connectome Workbench HCP http://www.humanconnectome.org/

software/connectome-workbench.html

FreeSurfer Fischl82 https://surfer.nmr.mgh.harvard.edu

FSL Jenkinson et al.83 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

Action Dataset This paper https://data.mendeley.com/datasets/8ym35td9ft
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
In the movie-watching experiment, we used the ‘‘HCP 7T’’ dataset (April 2018 data release). The dataset included 184 subjects. 176

subjects (106 females, 70 males) had complete functional data for movie-watching and resting-state scans. Subjects were healthy

young adults aged 22-35, and theywere scanned at the Center forMagnetic Resonance Research at theUniversity ofMinnesota. The

HCP data were acquired using protocols approved by the Washington University institutional review board, and written informed

consent was obtained from all subjects.

In the action localizer experiment, 22 subjects (16 females, 6 males, aged 22-35) with normal or corrected-to-normal vision were

scanned at the National Brain Mapping Lab in Iran. The experimental protocol was approved by an ethics committee in the Iran Uni-

versity of Medical Sciences (approval number: IR.IUMS.REC.1396.0465), and written informed consent was obtained from all

subjects.

METHOD DETAILS

Data acquisition
The HCP structural data were acquired using a customized 3 Tesla Siemens Connectom Skyra scanner with a standard Siemens

32-channel RF-receive head coil. At least one 3D T1w MPRAGE image and one 3D T2w SPACE image were collected at 0.7 mm

isotropic resolution. The HCP fMRI data were acquired using a 7 Tesla Siemens Magnetom scanner with the Nova32 32-channel

RF-receive head coil. Datawere collected in four scan sessions using amultiband gradient-echo echo-planar imaging (EPI) sequence

with the following parameters: repetition time (TR) = 1000ms, echo time (TE) = 22.2ms, flip angle = 45 deg, field of view (FOV) = 208 x

208 mm, matrix = 130 x 130, spatial resolution = 1.6 mm3, number of slices = 85, multiband factor = 5, image acceleration factor

(iPAT) = 2, partial Fourier sampling = 7/8, echo spacing = 0.64 ms, bandwidth = 1924 Hz/Px. The direction of phase encoding alter-

nated between posterior-to-anterior (PA) and anterior-to-posterior (AP) across runs. In 165 subjects, eye-tracking data were

collected using an EyeLink S1000 system. 162 subjects had valid data in four runs. Of the 648 runs, 580 runs had a sampling rate

of 1000 Hz, and 68 runs had a sampling rate of 500 Hz. The eye-tracking data provided horizontal and vertical gaze position and pupil

size measures for each time point.

The action localizer data were collected using a 3 Tesla Siemens Magnetom Prisma scanner with a standard Siemens 64-channel

RF-receive head coil. For each subject, a whole-brain anatomical scan was acquired using a T1-weighted MPRAGE sequence

(TR = 2000ms, TE = 3.47ms, flip angle = 7 deg, spatial resolution = 1 mm3, 256 sagittal slices, GRAPPA acquisition with acceleration

factor of 2). The functional scans were based on a gradient-echo EPI sequence (TR = 2000ms, TE = 30ms, flip angle = 90 deg, spatial

resolution = 3.5 mm3, 34 semi-axial slices, distance factor = 10%, GRAPPA acquisition with acceleration factor of 2). The slices were

obtained in an even-odd interleaved order. The first 3 volumes of each run were discarded as dummy scans to allow for MR signal

equilibration.

Stimuli and experimental paradigm
In themovie-watching experiment, subjects passively viewed a series of audiovisual movie clips in four functional runs, each�15min

in duration. Each run consisted of 4 or 5 clips. Clips varied in length from 1:03 to 4:19 min:s. A 20-s period of rest, indicated by the

word ‘‘REST’’ in white text on a black background, was inserted prior to the first movie clip, in betweenmovie clips, and following the

last movie clip. The first and third runs contained clips from independent films (both fiction and documentary) made freely available
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under Creative Commons license on Vimeo. The second and fourth runs contained clips from Hollywood films prepared by Cutting

et al.84 The last clip of all runs was always a montage of brief (1.5 s) videos, and it was included to facilitate test-retest and/or vali-

dation analyses. For a brief description of each clip, see Finn and Bandettini.85 Audio was delivered via Sensimetric earbuds, and

movies were presented in a full-screen mode (size: 21.8� W x 15.7� H).
In the resting-state scans, subjects were instructed to keep their eyes open andmaintain relaxed fixation on a bright cross-hair on a

dark background in a darkened room. Resting-state fMRI data were acquired in four runs of approximately 16 min each.

In the action localizer experiment, subjects were presented with visual stimuli from the publicly available Action Dataset (https://

data.mendeley.com/datasets/8ym35td9ft). This dataset included 300 video clips (dynamic stimuli) from 5 action categories (human-

object interaction, human-human interaction, object-object interaction, human action, and object motion). Each category contained

10 subcategories (see Figure S6 for the names of subcategories), and each subcategory contained 6 example stimuli. The duration of

all clips was 4.96 s (124 frames at a frame rate of 25 fps). Some of the action videos were originally from the UCF101 dataset,86 and

the remaining videos were obtained from YouTube. As a control condition, 60 scrambled video clips were generated by phase-

scrambling of frames of 60 action videos (12 randomly selected videos from each action category). To make smooth scrambled

videos, a fixed random seed was used for phase-scrambling of all frames. For each dynamic stimulus, a static stimulus (a 4.96-s

static frame/image) was also generated. The frame was typically extracted from the middle of video clips. During functional scans,

the stimuli (size: 10� W x 7.5� H) were embedded in a uniform gray background. All 720 stimuli were presented to each subject in 10

runs. Each run contained 12 dynamic and 12 static stimulus blocks that were presented alternately. Each stimulus block consisted of

3 randomly ordered stimuli (videos or images) from the same action category and subcategory. At each transition between stimuli,

there was 1 s (24 frames) of overlap in which their visual contents were gradually morphed to each other, to minimize visual transient

effects. Thus, block duration was 12 s. A 12-s blank epoch was presented at the beginning, middle, and end of each run. Throughout

the scans, subjects were instructed to continuously fixate a small fixation point at the center of screen while covertly attending to the

stimuli.

Subjects viewed the stimuli on a back-projected screen (1024 x 768 pixels resolution, 60-Hz refresh rate) via amountedmirror over

the head coil. In themovie-watching experiment, the stimuli were presented using E-Prime (https://pstnet.com/products/e-prime). In

the action localizer experiment, the stimuli were presented using Psychtoolbox in Matlab (http://psychtoolbox.org).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis software
The HCP data were preprocessed using the publicly released HCP pipelines.87 The software packages used for analysis includedCon-

nectome Workbench commandline tools (http://www.humanconnectome.org/software/connectome-workbench.html), FreeSurfer,

FSL, and Matlab. Connectome Workbench ‘wb_view’ GUI was used for visualization of maps.

Analysis of structural data
Structural images (T1w and T2w) were used for extracting subcortical gray matter structures and reconstructing cortical surfaces in

each subject. Volume data were transformed from native space into MNI space using a nonlinear volume-based registration. For ac-

curate cross-subject registration of cortical surfaces, a multimodal surface matching (MSM) algorithm88 was used. The MSM algo-

rithm has two versions: ‘MSMSulc’ (non-rigid surface alignment based on folding patterns) and ‘MSMAll’ (optimized alignment of

cortical areas using sulcal depth maps plus features from other modalities including myelin maps, resting-state network maps,

and visuotopic connectivity maps). Data in our work were based on MSMAll registration. After surface and volume registration,

cortical vertices were combined with subcortical gray matter voxels to form the standard ‘CIFTI grayordinates’ space (91,282

vertices/voxels with �2 mm cortical vertex spacing and 2 mm isotropic subcortical voxels).14

Analysis of movie-watching fMRI data
The movie-watching data were minimally preprocessed using the HCP pipelines.87,89 Preprocessing included correction for spatial

distortions due to gradient nonlinearity and b0 field inhomogeneity, field map-based unwarping of EPI images, motion correction,

brain-boundary-based registration of EPI to structural T1w scans, non-linear registration to MNI space, and grand-mean intensity

normalization. Data from the cortical gray matter ribbon were projected onto the surface and then onto the standard grayordinates

space usingMSMAll registration. Data wereminimally smoothed by a 2mmFWHMGaussian kernel in the grayordinates space. Thus,

smoothing was constrained to the cortical surface mesh in each hemisphere. Data were cleaned up for artifacts and structured noise

using sICA+FIX. Minimal high-pass filtering with a cutoff of 2000 s was also applied. The effect of this filter was similar to linear de-

trending of the fMRI signal. In each subject, data from four functional runs were concatenated after de-meaning.

Although the global signal was not explicitly removed during preprocessing, averaging of time courses across subjects in the anal-

ysis of movie-watching scans may have effectively removed the effects of global signal induced by physiological noise (respiration

and heart rates). The respiration and heart rates are expected to be largely unsynchronized across subjects while watching movies,

with the likely exception of dramaticmoments. Averaging of time courses across subjects would therefore reinforce the synchronized

neural signal without reinforcing the physiological noise for most of the duration of most movies.
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In the clustering analysis, we used an agglomerative hierarchical clustering algorithm. The Euclidean distance was used as a dis-

tance metric, and Ward’s method was used for linkage. The clustering was applied on a data matrix of vertices x time points. Time

courses of activity included 3655 time points for the entire movie-watching session, and they were obtained by averaging time

courses across 176 subjects. The initial number of cortical vertices in the data from CIFTI files was 59412 (29696 left cortex vertices

and 29716 right cortex vertices) after excluding vertices in medial wall. The asymmetry of medial wall was not ideal for testing the

similarity of clustering between two hemispheres. Thus, for right hemisphere, we excluded vertices corresponding to medial wall

in left hemisphere, which resulted in 59392 total number of vertices (29696 vertices in each hemisphere).

Analysis of resting-state fMRI data
The resting-state data were minimally preprocessed using the HCP pipelines,87,89 and were projected onto the standard grayordi-

nates space using MSMAll registration. Functional timeseries were cleaned/denoised using sICA+FIX. A Gaussian-weighted linear

high-pass filter with a soft cutoff of 2000 s was also applied. The resting-state time courses were not averaged across subjects

because they were not aligned to any events.

For global signal regression, the global mean timeseries in each run of each subject was first calculated by averaging timeseries

across all vertices and voxels in CIFTI file, then it was regressed out of signal in each vertex/voxel.

In the analysis in Figure S7, the mean timeseries of an executive control network in each run of each subject was correlated with

timeseries of all cortical vertices in the ipsilateral hemisphere using Pearson r correlation. The resulting correlation maps were aver-

aged across runs and across subjects after r-to-z Fisher transformation [z = artanh(r)]. The averaged correlationmapswere converted

back to the r maps using z-to-r transformation [r = tanh(z)].

Analysis of action localizer data
The action localizer data were preprocessed and analyzed using FreeSurfer and FS-FAST (http://surfer.nmr.mgh.harvard.edu). For

each subject, the cortical surfaces were computationally reconstructed by analyzing the anatomical MR images. The functional MR

volumes were first skull- stripped using FSL’s brain extraction tool to create a mask of brain-only voxels. Then, all volumes were

aligned to a reference volume at the middle time point of each run using AFNI’s motion correction algorithm. In all runs of all subjects,

the overall head motion was less than half of the voxel size. The next step of preprocessing was intensity normalization. Within the

brain mask, the mean intensity of all voxels across all time points was computed. The intensity value at each voxel at each time point

was then divided by the mean intensity and multiplied by 100. The functional volumes were rigidly co-registered to the same-subject

anatomical volumes using boundary-based registration method, then they were projected onto an average cortical surface (‘fsaver-

age’) using spherical transformation. The functional values were spatially smoothed on the surface using a 2D Gaussian kernel (full

width at half maximum = 5 mm).

For each surface vertex, activations for different stimulus conditions were calculated using a general linear model (GLM). In this

model, the timeseries of all runs within a session were concatenated, and a design matrix composed of stimulus-related task regres-

sors and scan-related nuisance regressors was constructed. The timeseries were whitened by removing temporal autocorrelations.

Task regressors were defined as boxcar functions convolved with a canonical hemodynamic response function. The head motion

parameters produced during realignment were used in the GLM as nuisance regressors to account for residual effects of subjects’

movements. Additional nuisance variables included linear trends, quadratic trends, and mean confound. Prior to estimating beta

values of the model, the first four time points of each run after dummy scans were excluded to avoid inhomogeneity effects of the

magnetic field. In each subject, the statistical activationmapswere computed by vertex-wise t test comparison between beta values.

The group-average activation maps were obtained by mixed-effects averaging of individual subjects’ maps.
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